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LETTER TO THE EDITOR 

Holonomy and lattice simulation of topologically non-trivial 
gauge fields 
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'I' Ibaraki College of Technology, 866 Nakane, Katsuta, Ibaraki, 312 Japan 
# College of Technology, Ibaraki University, Nakanarusawa 4-12-1, Hitachi, Ibaraki, 316 
Japan 

Received 23 November 1988 

Abstract. The holonomy of a gauge configuration is calculated from the transition function 
and the path-ordered exponential of the gauge potential for the case of general base 
manifolds. A general rule for the lattice simulation of gauge fields is proposed by explicitly 
giving the link variables. It is applied to a cold-start Monte Carlo study of the U ( l )  gauge 
field on a torus, and the average energy of a definite topological configuration is calculated. 

In lattice gauge theories, each link variable U ( b )  independently takes values in the 
structure group G (Wilson 1974). The ordered product 

U(bk) U(bk-1 ) .  * .  U(bi) (1) 

then gives the holonomy along a closed loop B which is composed of links 
b, , b2 ,  . . . , bk. A typical lattice action is expressed by a sum of small holonomy elements 
along plaquettes: 

where the sum is taken over all plaquettes, A is the area of plaquette p ,  r is the volume 
of the dual cell to p ,  and N is the dimension of the matrix representation of U. Various 
thermal quantities of the system at temperature T are computed from the probability 
weight of exp(-S/ T ) .  Now, if the base manifold has the topology of R", it is covered 
by only one coordinate patch. Then the link variables U (  b )  are trivially simulated by 
the gauge potential A. If the base space is an n-torus, n-sphere or any other space 
with non-trivial topology, however, the lattice simulation is no longer a trivial task. It 
is in precisely this case that many topologically distinct gauge configurations arise. If 
one obtains statistical equilibrium through a randomly started Monte Carlo iteration, 
the result obtained is a mixture of various topological excitations, each of which 
corresponds to a metastable state with a definite topological charge. It is important 
to choose one of them and calculate its thermal properties by a cold-start Monte Carlo 
iteration. 

In this letter we consider how we can give the link variables U ( b )  on a latticised 
manifold in the case that the base manifold is not covered by a single coordinate patch. 
These link variables must, as a whole, simulate the prescribed gauge configuration. 
The guiding principle is that the ordered product (1) should give the correct holonomy. 
As an immediate application, a cold-start Monte Carlo calculation for the U( 1) gauge 
field on a two-dimensional flat torus will be made. 
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As a preliminary step let us introduce the notion of a path-ordered exponential of 
a Lie-algebra-valued 1-form along a curve. Let G and L(G) be a Lie group and its 
Lie algebra. Let Y be a mapping from the unit interval I = [0, 11 to L(G). Let a be 
a curve in G determined by equations 

R( a( t ) - ' )a ' (  t )  = a'( t ) a  ( t ) - '  = Y (  t )  (3) 

a(0)  = e (4) 

where e is the identity element of G, a ' ( t )  is a vector tangential to U at a ( t )  and R 
denotes the right movement of G. In equation (3) the left-hand side is an element of 
T,(G), which is identified with L(G) in the standard way. Hence a(1) is uniquely 
determined (Kobayashi and Nomizu 1963) and we shall write it as 

a ( l ) = P e x p ( J l  Y( t )d t )  ( 5 )  

and refer to it as the path-ordered exponential of the 1-form Y ( t )  dt  along the 
interval I. 

Let us further introduce a differential manifold M and a differential curve B on 
M. Let fl be a Lie-algebra-valued 1-form on M. Then B*R, being the pullback of R 
on the unit interval, is a Lie-algebra-valued 1-form on I. Consider the equations 

a ' ( t )a ( t ) - '  = f l ( B ' ( t ) )  (6) 

a(0)  = e. (7) 

The unique solution for a(1) is 

a(1) = P exp( R(B'(t)) dt)  
I 

= P exp( J, B*n). 

We shall write it in another form: 

It does not depend on the parametrisation of B. 
Turning to the calculation of the holonomy, we shall first work with a single patch. 

Suppose that a connection 1-form w is defined on a principal G bundle P ( M " ,  G) 
over the n-dimensional base manifold M". Let VI be a coordinate neighbourhood of 
M "  and let cp, be its coordinate function so that 

where r is the canonical projection. A local cross section u1 is naturally defined with 
respect to cpl as 

U1 : VI + T - I (  VI) (+l(X) = c p l , b ) .  (11) 

The gauge potential AI is the pullback of w by ul: 

A,  = U T U  
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which is a Lie-algebra-valued 1-form on V, . Consider a smooth curve B I  in V, such 
that B,(O) = xo and B,(1) = x,. Let u1 = U ,  0 B1, which is a curve on the cross section 
cl. There is a unique horizontal lift C, of €3, which starts at u , ( O )  = cp,: ,(e).  This is 
given in the form 

G ( t )  = u l ( t ) a ( t )  = R ( a ( t ) ) u , ( t )  (13) 
where a is a curve in G to be determined. From the horizontality of C, we have 
o ( C ; ( t ) )  = 0; a ( t )  satisfies the differential equation (Kobayashi and Nomizu 1963) 

a ' ( t ) a ( t ) - ' =  - w ( u { ( t ) )  

= -Al(B;(t)) (14) 
which is uniquely solved and gives 

u ( l )  = P exp( I,, -A1). 

Then the parallel transport of C,(O) along B, is 

Because parallel transport commutes with the right movement of fibre, the parallel 
transport of U ~ E  .rr-'(x0) along B1 is given by 

Mapping both sides by cp ,,,,, we have 

Next we shall take into account other patches. Let B be a closed curve in M "  
starting from and ending at xo. Suppose that k coordinate neighbourhoods 
VI, V,, . . . , v k  are necessary to cover the loop B. Let us divide B into k pieces so 
that B = Bk 0 &-lo .  , .o B,  , and arrange things so that 

x,-, E V,-, n V, (19) 
for i = 1,2, . . . , k with xo = Xk and Vo = v k .  The definitions of cp,, cp,,,, a, and A, are 
analogous to the i = 1 case. Let the parallel transport of E .rr-'(x,-,) along B, be 
U, for i = 1,2 , .  . . , k. Then 

B,C V, BI(0) = XI-, = x, 

cpl,x,(U,) = p exp( I,, -A1) c p l , X , + , ( 4 - 1 ) *  (20) 

Successively applying (20) we see that the parallel transport of u0 along B is given by 

where we used the definition of the transition function 

gi,j(x) qi,x(U)cpj,x(u)-' x = m ~ V , n V , .  
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Mapping both sides by g l ,k (xO)  we obtain 

(Pl,,"(Uk) = m t , x " ( U o )  

The group element H precisely gives the holonomy along B. 
The above form for the holonomy suggests the rule for U (  b )  as follows. Suppose 

that M" is covered by the patches V,, V,, . . . . We can arrange them so that the 
following three conditions are met. 

( i )  Each site (lattice point) is contained in one and only one patch. 
(ii) Let b be a link. If b(1) E V,  and b(0)  E V,,  then the link b itself is contained 

(iii) If b ( 0 ) ~  V, ,  b ( 1 ) ~  V, and i # j ,  we can choose a point b' on b such that 

Now our rule is: for case A, put 

in V,. Put b'= b($) .  We shall call this case A. 

b ' E  V ,  n V,. Then g,,,(b') is well defined. We shall call this case B. 

U ( b )  =exp( - Ib  Ai) =exp(-Ai(b'),b'*) ( 2 5 )  

and for case B, put 

U ( b )  = gj,t(b')* (26) 

The U ( b )  of case A are very close to the identity element, because b is a small 
vector. So we can call them 'small phases'. On the other hand, the U ( b )  of case B 
cannot be chosen arbitrary close to the identity. Hence they are 'big phases'. 

As an immediate application of the above rule, let us consider the statistical 
mechanics of the U( l )  gauge model on a two-dimensional flat torus. A point on a 
torus is parametrised by a pair of real numbers (x ,  y ) ,  where 0 s x < 1 and 0 < y < 1. 
Figure 1 shows that a hot-started Monte Carlo iteration gives various configurations, 
each of which has a distinct topological charge defined by 

The base space is covered by at least four coordinate patches. Fortunately, however, 
by successively applying gauge transformations, we arrive at only one gauge potential, 
which is smoothly defined everywhere except a circle C = {(x, 0 )  I O  s x < l}, on which 
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Figure 1. Plot of @ / 2 ~  for T =  0.1 in a random-start Monte Carlo iteration. 
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the transition function is defined. Thus a U( 1) gauge potential is continuously deform- 
able to the following potential: 

A, = -i By 

A, = O  

B =constant 

which has a discontinuity on the circle C where the transition function is defined as 

g = exp( -il?x). (29) 

From the univalence of g, we have B = 2 r m  with an integer m. The vector potential 
(28) and the transition function (29 )  can be used for the initial configuration of a 
cold-start Monte Carlo calculation. Average energy per plaquette is plotted in figure 2 .  
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Figure 2. Plot of the average plaquette in a cold-start Monte Carlo calculation. Topological 
number m ranges from 0 (bottom) to 10 (top). 

We see that at sufficiently low temperatures, there are many metastable states and at 
high' temperatures they lose their topology. This topology collapse is due to finite 
lattice spacing. If we had first taken the limit A +. 0, these topological excitations could 
well survive to arbitrarily high temperatures. 
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